

4727/01

ADVANCED GCE MATHEMATICS

Further Pure Mathematics 3

FRIDAY 6 JUNE 2008

Afternoon Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

- 1 (a) A cyclic multiplicative group G has order 12. The identity element of G is e and another element is r, with order 12.
 - (i) Write down, in terms of e and r, the elements of the subgroup of G which is of order 4. [2]
 - (ii) Explain briefly why there is no proper subgroup of G in which two of the elements are e and r. [1]
 - (b) A group *H* has order *mnp*, where *m*, *n* and *p* are prime. State the possible orders of proper subgroups of *H*. [2]
- 2 Find the acute angle between the line with equation $\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} \mathbf{k})$ and the plane with equation $\mathbf{r} = 2\mathbf{i} + 3\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} \mathbf{k})$. [7]
- 3 (i) Use the substitution z = x + y to show that the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y+3}{x+y-1} \tag{A}$$

may be written in the form
$$\frac{dz}{dx} = \frac{2(z+1)}{z-1}$$
. [3]

- (ii) Hence find the general solution of the differential equation (A). [4]
- 4 (i) By expressing $\cos \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, show that

$$\cos^5 \theta \equiv \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta).$$
 [5]

- (ii) Hence solve the equation $\cos 5\theta + 5\cos 3\theta + 9\cos \theta = 0$ for $0 \le \theta \le \pi$. [4]
- **5** Two lines have equations

$$\frac{x-k}{2} = \frac{y+1}{-5} = \frac{z-1}{-3}$$
 and $\frac{x-k}{1} = \frac{y+4}{-4} = \frac{z}{-2}$,

where k is a constant.

- (i) Show that, for all values of k, the lines intersect, and find their point of intersection in terms of k. [6]
- (ii) For the case k = 1, find the equation of the plane in which the lines lie, giving your answer in the form ax + by + cz = d. [4]
- 6 The operation \circ on real numbers is defined by $a \circ b = a|b|$.
 - (i) Show that \circ is not commutative. [2]
 - (ii) Prove that \circ is associative. [4]
 - (iii) Determine whether the set of real numbers, under the operation \circ , forms a group. [4]

7 The roots of the equation $z^3 - 1 = 0$ are denoted by 1, ω and ω^2 .

- (i) Sketch an Argand diagram to show these roots. [1]
- (ii) Show that $1 + \omega + \omega^2 = 0$. [2]
- (iii) Hence evaluate

(a)
$$(2+\omega)(2+\omega^2)$$
, [2]

(b)
$$\frac{1}{2+\omega} + \frac{1}{2+\omega^2}$$
. [2]

(iv) Hence find a cubic equation, with integer coefficients, which has roots 2, $\frac{1}{2+\omega}$ and $\frac{1}{2+\omega^2}$. [4]

8 (i) Find the complementary function of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = \operatorname{cosec} x.$$
 [2]

- (ii) It is given that $y = p(\ln \sin x) \sin x + qx \cos x$, where p and q are constants, is a particular integral of this differential equation.
 - (a) Show that $p 2(p+q)\sin^2 x \equiv 1$. [6]
 - (b) Deduce the values of p and q. [2]
- (iii) Write down the general solution of the differential equation. State the set of values of *x*, in the interval $0 \le x \le 2\pi$, for which the solution is valid, justifying your answer. [3]

4727 Further Pure Mathematics 3

1 (a)(i)	e, r^3, r^6, r^9	M1	For stating e, r^m (any $m \dots 2$), and 2 other different
I (a)(I)	e,r ,r ,r	A1 2	elements in terms of e and r For all elements correct
(ii)	r generates G	B1 1	For this or any statement equivalent to: all elements of <i>G</i> are included in a group with <i>e</i> and <i>r</i> <i>OR</i> order of $r >$ order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1	For any 3 orders correct
		B1 2	For all 6 correct and no extras (Ignore 1 and <i>mnp</i>)
2	METHOD 1	3	
-		M1	For attempt to find normal vector, e.g. by finding
	$[1, 3, 2] \times [1, 2, -1]$ $\mathbf{n} = k[-7, 3, -1] OR 7x - 3y + z = c \ (=17)$	M1 A1	vector product of correct vectors, or Cartesian equation For correct vector OR LHS of equation
	$\theta = \sin^{-1} \frac{ [1, 4, -1] \cdot [-7, 3, -1] }{\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}}$	M1√	For using correct vectors for line and plane f.t. from normal
	$\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}$	M1* M1	For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta = \sin^{-1} \frac{6}{\sqrt{18}\sqrt{59}} = 10.6^{\circ}$	A1√ (*dep)	For scalar product. f.t. from their numerator
	(10.609°, 0.18517)	A1 7	For correct angle
	METHOD 2		For attended for the second sector of the for the
	$[1, 3, 2] \times [1, 2, -1]$	M1 A1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equatio For correct vector <i>OR</i> LHS of equation
	$\mathbf{n} = k[-7, 3, -1] OR 7x - 3y + z = c$ 7x - 3y + z = 17	M1√	For attempting to find RHS of equation
	$d = \frac{ 21 - 12 + 2 - 17 }{\sqrt{7^2 + 2^2 + 1^2}} = \frac{6}{\sqrt{59}}$	M1	f.t. from n or LHS of equation For using distance formula from a point on the line,
	$\sqrt{7^2 + 3^2 + 1^2} = \sqrt{59}$	A1√	e.g. (3, 4, 2), to the plane For correct distance. f.t. from equation
	$\theta = \sin^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^2 + 4^2 + 1^2}} = 10.6^{\circ}$	M1 A1	For using trigonometry For correct angle
	(10.609°, 0.18517)	7	
3 (i)	$\frac{dz}{dx} = 1 + \frac{dy}{dx}$	M1	For differentiating substitution (seen or implied)
	$\frac{dz}{dx} - 1 = \frac{z+3}{z-1} \implies \frac{dz}{dx} = \frac{2z+2}{z-1} = \frac{2(z+1)}{z-1}$	A1 A1 3	For correct equation in <i>z</i> AEF For correct simplification to AG
(ii)	$\int \frac{z-1}{z+1} dz = 2 \int dx$	B1	For $\int \frac{z-1}{z+1} (dz)$ and $\int (1) (dx)$ seen or implied
	$\Rightarrow \int 1 - \frac{2}{z+1} dz OR \int 1 - \frac{2}{u} du = 2x (+c)$	M1	For rearrangement of LHS into integrable form OR substitution e.g. $u = z + 1$ or $u = z - 1$
	$\Rightarrow z - 2\ln(z+1) OR z+1 - 2\ln(z+1) = 2x (+c)$	A1	For correct integration of LHS as $f(z)$
	$-2x(\pm c)$		

4 (i)	$\cos^5 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5$	B1		For $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ seen or implied z may be used for $e^{i\theta}$ throughout
	$\cos^5 \theta = \frac{1}{32} \left(e^{i\theta} + e^{-i\theta} \right)^5$	M1		For expanding $(e^{i\theta} + e^{-i\theta})^5$. At least 3 terms and
				2 binomial coefficients required <i>OR</i> reasonable attempt at expansion in stages
$\cos^5 \theta$	$=\frac{1}{32}\left(e^{5i\theta}+e^{-5i\theta}+5\left(e^{3i\theta}+e^{-3i\theta}\right)+10\left(e^{i\theta}+e^{-6i\theta}\right)+10\left(e^{i\theta}+e^{-6i\theta}\right)+10\left(e^{i\theta}+e^{-6i\theta}\right)$	iθ))	A1	For correct binomial expansion
	$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$	M1 A1	5	For grouping terms and using multiple angles For answer obtained correctly AG
(ii)	$\cos\theta = 16\cos^5\theta$	B1		For stating correct equation of degree 5
				$OR \ 1 = 16 \cos^4 \theta \ \mathbf{AEF}$
	$\Rightarrow \cos \theta = 0, \cos \theta = \pm \frac{1}{2}$	M1		For obtaining at least one of the values of $\cos \theta$ from $\cos \theta = k \cos^5 \theta \ OR$ from $1 = k \cos^4 \theta$
	$\Rightarrow \theta = \frac{1}{2}\pi, \ \frac{1}{2}\pi, \ \frac{2}{2}\pi$	A1		A1 for any two correct values of θ
	$\rightarrow 0^{-} 2^{-} 2^{-} 2^{-} 2^{-} 3^{-} 2^{-} 3^{-} 2^{-} 3^{-} 2^$	A1	4	A1 for the 3rd value and no more in 0,, θ ,, π
				Ignore values outside 0,, θ ,, π
		9		

5 (i)	METHOD 1		
(-)	Lines meet where		
	$(x =) k + 2\lambda = k + \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1 - 3\lambda = -2\mu$		
		M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct values of λ and μ
		B1	For attempting a check in 3rd equation
			<i>OR</i> verifying point of intersection is on both lines
	$\Rightarrow (k-2, 4, 4)$	A1 6	For correct point of intersection (allow vector)
			SR For finding $\lambda OR \mu$ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
	METHOD 2		
	$d = \frac{ [0, 3, 1] \cdot [2, -5, -3] \times [1, -4, -2] }{ \mathbf{b} \times \mathbf{c} }$		For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division
	$\mathbf{b} \times \mathbf{c}$		by $ \mathbf{b} \times \mathbf{c} $ is not essential)
	$d = c[0, 3, 1] \cdot [-2, 1, -3] = 0$	B1	and showing $d = 0$ correctly
	\Rightarrow lines intersect		
	Lines meet where		
	$(x =) (k+) 2\lambda = (k+) \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1 - 3\lambda = -2\mu$		
		M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct value of $\lambda OR \mu$
	$\Rightarrow (k-2, 4, 4)$	A1	For correct point of intersection (allow vector)
	METHOD 3		
	e.g. $x-k = \frac{2(y+1)}{-5} = \frac{y+4}{-4}$	M1	For solving one pair of simultaneous equations
	$\Rightarrow y = 4$	A1	For correct value of <i>x</i> , <i>y</i> or <i>z</i>
	$\frac{z-1}{-3} = \frac{y+1}{-5}$	M1	For solving for the third variable
	x = k - 2 OR z = 4	A1	For correct values of 2 of x , y and z
	$x-k = \frac{z}{-2}$ checks with $x = k-2$, $z = 4$	B1	For attempting a check in 3rd equation
	$\Rightarrow (k-2, 4, 4)$	A1	For correct point of intersection (allow vector)
(ii)	METHOD 1		
	$\mathbf{n} = [2, -5, -3] \times [1, -4, -2]$	M1	For finding vector product of 2 directions
	$\mathbf{n} = c[-2, 1, -3]$	A1	For correct normal
			SR Following Method 2 for (i), award M1 A $\frac{1}{10}$ for p_{10} ft from their p_{10}
	(1, -1, 1) <i>OR</i> (1, -4, 0) <i>OR</i> (-1, 4, 4)	M1	award M1 A1 $\sqrt{1}$ for n , f.t. from their n For substituting a point in LHS
	$(1, -1, 1) OK (1, -4, 0) OK (-1, 4, 4)$ $\Rightarrow 2x - y + 3z = 6$	A1 4	For correct equation of plane AEF cartesian
	$\frac{2x - y + 32 - 6}{\text{METHOD 2}}$		
	$\mathbf{r} = [1, -1, 1] + \lambda[2, -5, -3] + \mu[1, -4, -2]$	M1	For using vector equation of plane $(OR [1, -4, 0]$ for a)
	$x = 1 + 2\lambda + \mu$		
	$y = -1 - 5\lambda - 4\mu$	A1	For writing 3 linear equations
	$z = 1 - 3\lambda - 2\mu$		
		M1	For eliminating λ and μ
	$\Rightarrow 2x - y + 3z = 6$	A1	For correct equation of plane AEF cartesian
		10	
		10	

6 (i)	When <i>a</i> , <i>b</i> have opposite signs,	M1	For considering sign of $a b OR b a $ in general or in a specific case
	$a b = \pm ab$, $b a = \mp ba \implies a b \neq b a $	A1 2	2 For showing that $a b \neq b a $
			Note that $ x = \sqrt{x^2}$ may be used
(ii)	$(a \circ b) \circ c = (a b) \circ c = a b c OR a bc $	M1	For using 3 distinct elements and simplifying $(a \circ b) \circ c \ OR \ a \circ (b \circ c)$
a o	$(b \circ c) = a \circ (b c) = a b c = a b c OR a bc $	A1 M1 A1	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
(iii)		B1*	For stating $e = \pm 1$ OR no identity
	<i>EITHER</i> $a \circ e = a \mid e \mid = a \implies e = \pm 1$	M1	For attempting algebraic justification of $+1$ and -1 for e
	$OR e \circ a = e a = a$ $\Rightarrow e = 1 \text{ for } a > 0, \ e = -1 \text{ for } a < 0$	A1	For deducing no (unique) identity
	Not a group	B1 (*dep)	For stating not a group
		10	•

7 (i)	ω•		Polar or cartesian values of ω and ω^2 may be used anywhere in this question
	$\omega^2 \bullet$	B1 1	For showing 3 points in approximately correct positions
			Allow ω and ω^2 interchanged, or unlabelled
(ii)	EITHER $1 + \omega + \omega^2$ = sum of roots of cubic = 0 $OR = c^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$	M1 A1 2	For result shown by any correct method AG
	$OR \omega^3 = 1 \Longrightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$		
	$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1\text{)}$ OR sum of G.P.		
	$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$		
	OR shown on Argand diagram or explained in terms of vectors		Reference to vectors in part (i) diagram may be made
	$1 + \operatorname{cis} \frac{2}{3}\pi + \operatorname{cis} \frac{4}{3}\pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$	(i) = 0	
(iii) (a)	$(2 + \omega)(2 + \omega^2) = 4 + 2(\omega + \omega^2) + \omega^3$	 M1	For using $1 + \omega + \omega^2 = 0$ OR values of ω , ω^2
() ()	$(2 + \omega)(2 + \omega) = 1 + 2(\omega + \omega) + \omega$ = 4 - 2 + 1 = 3	A1 2	
(b)	$\frac{1}{2+\omega} + \frac{1}{2+\omega^2} = \frac{2+(\omega+\omega^2)+2}{3} = 1$	M1	For combining fractions OR multiplying top and
	$2+\omega$ $2+\omega^2$ 3 -1	A1√ 2	bottom of 2 fractions by complex conjugates For correct answer f.t. from (a)
(iv)	For the cubic $x^3 + px^2 + qx + r = 0$ METHOD 1		
	$\sum \alpha = 2 + 1 = 3 \iff p = -3$	M1	For calculating two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$
	$\sum \alpha \beta = \frac{2}{2+\omega} + \frac{2}{2+\omega^2} + \frac{1}{3} = \frac{7}{3} \ (=q)$	M1	For calculating all of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$ OR all of p, q, r
	$\alpha\beta\gamma = \frac{2}{3} \left(\Rightarrow r = -\frac{2}{3} \right)$	A1	For at least two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$ correct (or values of <i>p</i> , <i>q</i> , <i>r</i>)
	$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$	A1 4	For correct equation CAO
	METHOD 2 $ \begin{pmatrix} x-2 \\ x-2 \\ x-\frac{1}{2+\omega} \\ x^{3} + \left(-2 - \frac{1}{2+\omega} - \frac{1}{2+\omega^{2}}\right)x^{2} \\ + \left(\frac{1}{(2+\omega)(2+\omega^{2})} + \frac{2}{2+\omega} + \frac{2}{2+\omega^{2}}\right)x $	M1	For multiplying out LHS in terms of ω or cis $\frac{1}{3}k\pi$
	$-\frac{2}{\left(2+\omega\right)\left(2+\omega^{2}\right)}=0$	M1	For simplifying, using parts (ii), (iii) or values of ω
	$\Rightarrow x^3 - 3x^2 + \frac{7}{3}x - \frac{2}{3} = 0$	A1	For at least two of <i>p</i> , <i>q</i> , <i>r</i> correct
	$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$	A1	For correct equation CAO

Mark Scheme

8 (i)	$m^2 + 1 = 0 \implies m = \pm i$	M1		For stating and attempting to solve correct auxiliary
	$\Rightarrow C.F.$ (y =) $Ce^{ix} + De^{-ix} = A\cos x + B\sin x$	A1	2	equation For correct C.F. (must be in trig form) SR If some or all of the working is omitted, award full credit for correct answer
(ii)(a)	$y = p(\ln \sin x) \sin x + qx \cos x$	M1		For attempting to differentiate P.I. (product rule needed at least once)
	$\frac{\cos x}{\sin x}\sin x + p(\ln \sin x)\cos x + q\cos x - qx\sin x$	A1		For correct (unsimplified) result AEF
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -$	$p\sin x - p(\ln\sin x)\sin x + \frac{p\cos^2 x}{\sin x}$	A1		For correct (unsimplified) result AEF
	$-2q\sin x - qx\cos x$			
	$-p\sin x + \frac{p\cos^2 x}{\sin x} - 2q\sin x \equiv \frac{1}{\sin x}$	M1		For substituting their $\frac{d^2 y}{dx^2}$ and y into D.E.
		M1		For using $\sin^2 x + \cos^2 x = 1$
	$\Rightarrow p - 2(p+q)\sin^2 x \equiv 1$	A1	6	For simplifying to $AG (\equiv may be =)$
(b)		M1		For attempting to find p and q by equating coefficients of constant and $\sin^2 x$ <i>AND/OR</i> giving value(s) to x (allow any value for x , including 0)
	p = 1, q = -1	A1	2	For both values correct
(iii)	G.S. $y = A\cos x + B\sin x + (\ln \sin x)\sin x - x\cos x$	B1√		For correct G.S. f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if p and q have not been found)
	$\operatorname{cosec} x$ undefined at $x = 0, \pi, 2\pi$	M1		For considering domain of $\operatorname{cosec} x \ OR \ \sin x \neq 0$
	$OR \sin x > 0$ in $\ln \sin x$			$OR \ln \sin x$ term
	$\Rightarrow 0 < x < \pi$	A1	3	For stating correct range CAO SR Award B1 for correct answer with justification omitted or incorrect
		13	3	